Skip to main content

Adding OpenAI-Compatible Providers

For simple OpenAI-compatible providers (like Hyperbolic, Nscale, etc.), you can add support by editing a single JSON file.

Quick Start​

  1. Edit litellm/llms/openai_like/providers.json
  2. Add your provider configuration
  3. Test with: litellm.completion(model="your_provider/model-name", ...)

Basic Configuration​

For a fully OpenAI-compatible provider:

{
"your_provider": {
"base_url": "https://api.yourprovider.com/v1",
"api_key_env": "YOUR_PROVIDER_API_KEY"
}
}

That's it! The provider is now available.

Configuration Options​

Required Fields​

  • base_url - API endpoint (e.g., https://api.provider.com/v1)
  • api_key_env - Environment variable name for API key (e.g., PROVIDER_API_KEY)

Optional Fields​

  • api_base_env - Environment variable to override base_url
  • base_class - Use "openai_gpt" (default) or "openai_like"
  • param_mappings - Map OpenAI parameter names to provider-specific names
  • constraints - Parameter value constraints (min/max)
  • special_handling - Special behaviors like content format conversion

Examples​

Simple Provider (Fully Compatible)​

{
"hyperbolic": {
"base_url": "https://api.hyperbolic.xyz/v1",
"api_key_env": "HYPERBOLIC_API_KEY"
}
}

Provider with Parameter Mapping​

{
"publicai": {
"base_url": "https://api.publicai.co/v1",
"api_key_env": "PUBLICAI_API_KEY",
"param_mappings": {
"max_completion_tokens": "max_tokens"
}
}
}

Provider with Constraints​

{
"custom_provider": {
"base_url": "https://api.custom.com/v1",
"api_key_env": "CUSTOM_API_KEY",
"constraints": {
"temperature_max": 1.0,
"temperature_min": 0.0
}
}
}

Usage​

import litellm
import os

# Set your API key
os.environ["YOUR_PROVIDER_API_KEY"] = "your-key-here"

# Use the provider
response = litellm.completion(
model="your_provider/model-name",
messages=[{"role": "user", "content": "Hello"}],
)

When to Use Python Instead​

Use a Python config class if you need:

  • Custom authentication flows (OAuth, JWT, etc.)
  • Complex request/response transformations
  • Provider-specific streaming logic
  • Advanced tool calling modifications

For these cases, create a config class in litellm/llms/your_provider/chat/transformation.py that inherits from OpenAIGPTConfig or OpenAILikeChatConfig.

Testing​

Test your provider:

# Quick test
python -c "
import litellm
import os
os.environ['PROVIDER_API_KEY'] = 'your-key'
response = litellm.completion(
model='provider/model-name',
messages=[{'role': 'user', 'content': 'test'}]
)
print(response.choices[0].message.content)
"

Reference​

See existing providers in litellm/llms/openai_like/providers.json for examples.