Skip to main content

AI/ML API

Getting started with the AI/ML API is simple. Follow these steps to set up your integration:

1. Get Your API Key​

To begin, you need an API key. You can obtain yours here:
πŸ”‘ Get Your API Key

2. Explore Available Models​

Looking for a different model? Browse the full list of supported models:
πŸ“š Full List of Models

3. Read the Documentation​

For detailed setup instructions and usage guidelines, check out the official documentation:
πŸ“– AI/ML API Docs

4. Need Help?​

If you have any questions, feel free to reach out. We’re happy to assist! πŸš€ Discord

Usage​

You can choose from LLama, Qwen, Flux, and 200+ other open and closed-source models on aimlapi.com/models. For example:

import litellm

response = litellm.completion(
model="openai/meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo", # The model name must include prefix "openai" + the model name from ai/ml api
api_key="", # your aiml api-key
api_base="https://api.aimlapi.com/v2",
messages=[
{
"role": "user",
"content": "Hey, how's it going?",
}
],
)

Streaming​

import litellm

response = litellm.completion(
model="openai/Qwen/Qwen2-72B-Instruct", # The model name must include prefix "openai" + the model name from ai/ml api
api_key="", # your aiml api-key
api_base="https://api.aimlapi.com/v2",
messages=[
{
"role": "user",
"content": "Hey, how's it going?",
}
],
stream=True,
)
for chunk in response:
print(chunk)

Async Completion​

import asyncio

import litellm


async def main():
response = await litellm.acompletion(
model="openai/anthropic/claude-3-5-haiku", # The model name must include prefix "openai" + the model name from ai/ml api
api_key="", # your aiml api-key
api_base="https://api.aimlapi.com/v2",
messages=[
{
"role": "user",
"content": "Hey, how's it going?",
}
],
)
print(response)


if __name__ == "__main__":
asyncio.run(main())

Async Streaming​

import asyncio
import traceback

import litellm


async def main():
try:
print("test acompletion + streaming")
response = await litellm.acompletion(
model="openai/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF", # The model name must include prefix "openai" + the model name from ai/ml api
api_key="", # your aiml api-key
api_base="https://api.aimlapi.com/v2",
messages=[{"content": "Hey, how's it going?", "role": "user"}],
stream=True,
)
print(f"response: {response}")
async for chunk in response:
print(chunk)
except:
print(f"error occurred: {traceback.format_exc()}")
pass


if __name__ == "__main__":
asyncio.run(main())

Async Embedding​

import asyncio

import litellm


async def main():
response = await litellm.aembedding(
model="openai/text-embedding-3-small", # The model name must include prefix "openai" + the model name from ai/ml api
api_key="", # your aiml api-key
api_base="https://api.aimlapi.com/v1", # πŸ‘ˆ the URL has changed from v2 to v1
input="Your text string",
)
print(response)


if __name__ == "__main__":
asyncio.run(main())

Async Image Generation​

import asyncio

import litellm


async def main():
response = await litellm.aimage_generation(
model="openai/dall-e-3", # The model name must include prefix "openai" + the model name from ai/ml api
api_key="", # your aiml api-key
api_base="https://api.aimlapi.com/v1", # πŸ‘ˆ the URL has changed from v2 to v1
prompt="A cute baby sea otter",
)
print(response)


if __name__ == "__main__":
asyncio.run(main())