AI/ML API
Getting started with the AI/ML API is simple. Follow these steps to set up your integration:
1. Get Your API Keyβ
To begin, you need an API key. You can obtain yours here:
π Get Your API Key
2. Explore Available Modelsβ
Looking for a different model? Browse the full list of supported models:
π Full List of Models
3. Read the Documentationβ
For detailed setup instructions and usage guidelines, check out the official documentation:
π AI/ML API Docs
4. Need Help?β
If you have any questions, feel free to reach out. Weβre happy to assist! π Discord
Usageβ
You can choose from LLama, Qwen, Flux, and 200+ other open and closed-source models on aimlapi.com/models. For example:
import litellm
response = litellm.completion(
model="openai/meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo", # The model name must include prefix "openai" + the model name from ai/ml api
api_key="", # your aiml api-key
api_base="https://api.aimlapi.com/v2",
messages=[
{
"role": "user",
"content": "Hey, how's it going?",
}
],
)
Streamingβ
import litellm
response = litellm.completion(
model="openai/Qwen/Qwen2-72B-Instruct", # The model name must include prefix "openai" + the model name from ai/ml api
api_key="", # your aiml api-key
api_base="https://api.aimlapi.com/v2",
messages=[
{
"role": "user",
"content": "Hey, how's it going?",
}
],
stream=True,
)
for chunk in response:
print(chunk)
Async Completionβ
import asyncio
import litellm
async def main():
response = await litellm.acompletion(
model="openai/anthropic/claude-3-5-haiku", # The model name must include prefix "openai" + the model name from ai/ml api
api_key="", # your aiml api-key
api_base="https://api.aimlapi.com/v2",
messages=[
{
"role": "user",
"content": "Hey, how's it going?",
}
],
)
print(response)
if __name__ == "__main__":
asyncio.run(main())
Async Streamingβ
import asyncio
import traceback
import litellm
async def main():
try:
print("test acompletion + streaming")
response = await litellm.acompletion(
model="openai/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF", # The model name must include prefix "openai" + the model name from ai/ml api
api_key="", # your aiml api-key
api_base="https://api.aimlapi.com/v2",
messages=[{"content": "Hey, how's it going?", "role": "user"}],
stream=True,
)
print(f"response: {response}")
async for chunk in response:
print(chunk)
except:
print(f"error occurred: {traceback.format_exc()}")
pass
if __name__ == "__main__":
asyncio.run(main())
Async Embeddingβ
import asyncio
import litellm
async def main():
response = await litellm.aembedding(
model="openai/text-embedding-3-small", # The model name must include prefix "openai" + the model name from ai/ml api
api_key="", # your aiml api-key
api_base="https://api.aimlapi.com/v1", # π the URL has changed from v2 to v1
input="Your text string",
)
print(response)
if __name__ == "__main__":
asyncio.run(main())
Async Image Generationβ
import asyncio
import litellm
async def main():
response = await litellm.aimage_generation(
model="openai/dall-e-3", # The model name must include prefix "openai" + the model name from ai/ml api
api_key="", # your aiml api-key
api_base="https://api.aimlapi.com/v1", # π the URL has changed from v2 to v1
prompt="A cute baby sea otter",
)
print(response)
if __name__ == "__main__":
asyncio.run(main())