Ollama
LiteLLM supports all models from Ollama
We recommend using ollama_chat for better responses.
Pre-requisites​
Ensure you have your ollama server running
Example usage​
from litellm import completion
response = completion(
model="ollama/llama2",
messages=[{ "content": "respond in 20 words. who are you?","role": "user"}],
api_base="http://localhost:11434"
)
print(response)
Example usage - Streaming​
from litellm import completion
response = completion(
model="ollama/llama2",
messages=[{ "content": "respond in 20 words. who are you?","role": "user"}],
api_base="http://localhost:11434",
stream=True
)
print(response)
for chunk in response:
print(chunk['choices'][0]['delta'])
Example usage - Streaming + Acompletion​
Ensure you have async_generator installed for using ollama acompletion with streaming
pip install async_generator
async def async_ollama():
response = await litellm.acompletion(
model="ollama/llama2",
messages=[{ "content": "what's the weather" ,"role": "user"}],
api_base="http://localhost:11434",
stream=True
)
async for chunk in response:
print(chunk)
# call async_ollama
import asyncio
asyncio.run(async_ollama())
Example Usage - JSON Mode​
To use ollama JSON Mode pass format="json"
to litellm.completion()
from litellm import completion
response = completion(
model="ollama/llama2",
messages=[
{
"role": "user",
"content": "respond in json, what's the weather"
}
],
max_tokens=10,
format = "json"
)
Example Usage - Tool Calling​
To use ollama tool calling, pass tools=[{..}]
to litellm.completion()
- SDK
- PROXY
from litellm import completion
import litellm
## [OPTIONAL] REGISTER MODEL - not all ollama models support function calling, litellm defaults to json mode tool calls if native tool calling not supported.
# litellm.register_model(model_cost={
# "ollama_chat/llama3.1": {
# "supports_function_calling": true
# },
# })
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
response = completion(
model="ollama_chat/llama3.1",
messages=messages,
tools=tools
)
- Setup config.yaml
model_list:
- model_name: "llama3.1"
litellm_params:
model: "ollama_chat/llama3.1"
keep_alive: "8m" # Optional: Overrides default keep_alive, use -1 for Forever
model_info:
supports_function_calling: true
- Start proxy
litellm --config /path/to/config.yaml
- Test it!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "llama3.1",
"messages": [
{
"role": "user",
"content": "What'\''s the weather like in Boston today?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
],
"tool_choice": "auto",
"stream": true
}'
Using ollama api/chat
​
In order to send ollama requests to POST /api/chat
on your ollama server, set the model prefix to ollama_chat
from litellm import completion
response = completion(
model="ollama_chat/llama2",
messages=[{ "content": "respond in 20 words. who are you?","role": "user"}],
)
print(response)
Ollama Models​
Ollama supported models: https://github.com/ollama/ollama
Model Name | Function Call |
---|---|
Mistral | completion(model='ollama/mistral', messages, api_base="http://localhost:11434", stream=True) |
Mistral-7B-Instruct-v0.1 | completion(model='ollama/mistral-7B-Instruct-v0.1', messages, api_base="http://localhost:11434", stream=False) |
Mistral-7B-Instruct-v0.2 | completion(model='ollama/mistral-7B-Instruct-v0.2', messages, api_base="http://localhost:11434", stream=False) |
Mixtral-8x7B-Instruct-v0.1 | completion(model='ollama/mistral-8x7B-Instruct-v0.1', messages, api_base="http://localhost:11434", stream=False) |
Mixtral-8x22B-Instruct-v0.1 | completion(model='ollama/mixtral-8x22B-Instruct-v0.1', messages, api_base="http://localhost:11434", stream=False) |
Llama2 7B | completion(model='ollama/llama2', messages, api_base="http://localhost:11434", stream=True) |
Llama2 13B | completion(model='ollama/llama2:13b', messages, api_base="http://localhost:11434", stream=True) |
Llama2 70B | completion(model='ollama/llama2:70b', messages, api_base="http://localhost:11434", stream=True) |
Llama2 Uncensored | completion(model='ollama/llama2-uncensored', messages, api_base="http://localhost:11434", stream=True) |
Code Llama | completion(model='ollama/codellama', messages, api_base="http://localhost:11434", stream=True) |
Llama2 Uncensored | completion(model='ollama/llama2-uncensored', messages, api_base="http://localhost:11434", stream=True) |
Meta LLaMa3 8B | completion(model='ollama/llama3', messages, api_base="http://localhost:11434", stream=False) |
Meta LLaMa3 70B | completion(model='ollama/llama3:70b', messages, api_base="http://localhost:11434", stream=False) |
Orca Mini | completion(model='ollama/orca-mini', messages, api_base="http://localhost:11434", stream=True) |
Vicuna | completion(model='ollama/vicuna', messages, api_base="http://localhost:11434", stream=True) |
Nous-Hermes | completion(model='ollama/nous-hermes', messages, api_base="http://localhost:11434", stream=True) |
Nous-Hermes 13B | completion(model='ollama/nous-hermes:13b', messages, api_base="http://localhost:11434", stream=True) |
Wizard Vicuna Uncensored | completion(model='ollama/wizard-vicuna', messages, api_base="http://localhost:11434", stream=True) |
Ollama Vision Models​
Model Name | Function Call |
---|---|
llava | completion('ollama/llava', messages) |
Using Ollama Vision Models​
Call ollama/llava
in the same input/output format as OpenAI gpt-4-vision
LiteLLM Supports the following image types passed in url
- Base64 encoded svgs
Example Request
import litellm
response = litellm.completion(
model = "ollama/llava",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABmCAYAAADBPx+VAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAA3VSURBVHgB7Z27r0zdG8fX743i1bi1ikMoFMQloXRpKFFIqI7LH4BEQ+NWIkjQuSWCRIEoULk0gsK1kCBI0IhrQVT7tz/7zZo888yz1r7MnDl7z5xvsjkzs2fP3uu71nNfa7lkAsm7d++Sffv2JbNmzUqcc8m0adOSzZs3Z+/XES4ZckAWJEGWPiCxjsQNLWmQsWjRIpMseaxcuTKpG/7HP27I8P79e7dq1ars/yL4/v27S0ejqwv+cUOGEGGpKHR37tzJCEpHV9tnT58+dXXCJDdECBE2Ojrqjh071hpNECjx4cMHVycM1Uhbv359B2F79+51586daxN/+pyRkRFXKyRDAqxEp4yMlDDzXG1NPnnyJKkThoK0VFd1ELZu3TrzXKxKfW7dMBQ6bcuWLW2v0VlHjx41z717927ba22U9APcw7Nnz1oGEPeL3m3p2mTAYYnFmMOMXybPPXv2bNIPpFZr1NHn4HMw0KRBjg9NuRw95s8PEcz/6DZELQd/09C9QGq5RsmSRybqkwHGjh07OsJSsYYm3ijPpyHzoiacg35MLdDSIS/O1yM778jOTwYUkKNHWUzUWaOsylE00MyI0fcnOwIdjvtNdW/HZwNLGg+sR1kMepSNJXmIwxBZiG8tDTpEZzKg0GItNsosY8USkxDhD0Rinuiko2gfL/RbiD2LZAjU9zKQJj8RDR0vJBR1/Phx9+PHj9Z7REF4nTZkxzX4LCXHrV271qXkBAPGfP/atWvu/PnzHe4C97F48eIsRLZ9+3a3f/9+87dwP1JxaF7/3r17ba+5l4EcaVo0lj3SBq5kGTJSQmLWMjgYNei2GPT1MuMqGTDEFHzeQSP2wi/jGnkmPJ/nhccs44jvDAxpVcxnq0F6eT8h4ni/iIWpR5lPyA6ETkNXoSukvpJAD3AsXLiwpZs49+fPn5ke4j10TqYvegSfn0OnafC+Tv9ooA/JPkgQysqQNBzagXY55nO/oa1F7qvIPWkRL12WRpMWUvpVDYmxAPehxWSe8ZEXL20sadYIozfmNch4QJPAfeJgW3rNsnzphBKNJM2KKODo1rVOMRYik5ETy3ix4qWNI81qAAirizgMIc+yhTytx0JWZuNI03qsrgWlGtwjoS9XwgUhWGyhUaRZZQNNIEwCiXD16tXcAHUs79co0vSD8rrJCIW98pzvxpAWyyo3HYwqS0+H0BjStClcZJT5coMm6D2LOF8TolGJtK9fvyZpyiC5ePFi9nc/oJU4eiEP0jVoAnHa9wyJycITMP78+eMeP37sXrx44d6+fdt6f82aNdkx1pg9e3Zb5W+RSRE+n+VjksQWifvVaTKFhn5O8my63K8Qabdv33b379/PiAP//vuvW7BggZszZ072/+TJk91YgkafPn166zXB1rQHFvouAWHq9z3SEevSUerqCn2/dDCeta2jxYbr69evk4MHDyY7d+7MjhMnTiTPnz9Pfv/+nfQT2ggpO2dMF8cghuoM7Ygj5iWCqRlGFml0QC/ftGmTmzt3rmsaKDsgBSPh0/8yPeLLBihLkOKJc0jp8H8vUzcxIA1k6QJ/c78tWEyj5P3o4u9+jywNPdJi5rAH9x0KHcl4Hg570eQp3+vHXGyrmEeigzQsQsjavXt38ujRo44LQuDDhw+TW7duRS1HGgMxhNXHgflaNTOsHyKvHK5Ijo2jbFjJBQK9YwFd6RVMzfgRBmEfP37suBBm/p49e1qjEP2mwTViNRo0VJWH1deMXcNK08uUjVUu7s/zRaL+oLNxz1bpANco4npUgX4G2eFbpDFyQoQxojBCpEGSytmOH8qrH5Q9vuzD6ofQylkCUmh8DBAr+q8JCyVNtWQIidKQE9wNtLSQnS4jDSsxNHogzFuQBw4cyM61UKVsjfr3ooBkPSqqQHesUPWVtzi9/vQi1T+rJj7WiTz4Pt/l3LxUkr5P2VYZaZ4URpsE+st/dujQoaBBYokbrz/8TJNQYLSonrPS9kUaSkPeZyj1AWSj+d+VBoy1pIWVNed8P0Ll/ee5HdGRhrHhR5GGN0r4LGZBaj8oFDJitBTJzIZgFcmU0Y8ytWMZMzJOaXUSrUs5RxKnrxmbb5YXO9VGUhtpXldhEUogFr3IzIsvlpmdosVcGVGXFWp2oU9kLFL3dEkSz6NHEY1sjSRdIuDFWEhd8KxFqsRi1uM/nz9/zpxnwlESONdg6dKlbsaMGS4EHFHtjFIDHwKOo46l4TxSuxgDzi+rE2jg+BaFruOX4HXa0Nnf1lwAPufZeF8/r6zD97WK2qFnGjBxTw5qNGPxT+5T/r7/7RawFC3j4vTp09koCxkeHjqbHJqArmH5UrFKKksnxrK7FuRIs8STfBZv+luugXZ2pR/pP9Ois4z+TiMzUUkUjD0iEi1fzX8GmXyuxUBRcaUfykV0YZnlJGKQpOiGB76x5GeWkWWJc3mOrK6S7xdND+W5N6XyaRgtWJFe13GkaZnKOsYqGdOVVVbGupsyA/l7emTLHi7vwTdirNEt0qxnzAvBFcnQF16xh/TMpUuXHDowhlA9vQVraQhkudRdzOnK+04ZSP3DUhVSP61YsaLtd/ks7ZgtPcXqPqEafHkdqa84X6aCeL7YWlv6edGFHb+ZFICPlljHhg0bKuk0CSvVznWsotRu433alNdFrqG45ejoaPCaUkWERpLXjzFL2Rpllp7PJU2a/v7Ab8N05/9t27Z16KUqoFGsxnI9EosS2niSYg9SpU6B4JgTrvVW1flt1sT+0ADIJU2maXzcUTraGCRaL1Wp9rUMk16PMom8QhruxzvZIegJjFU7LLCePfS8uaQdPny4jTTL0dbee5mYokQsXTIWNY46kuMbnt8Kmec+LGWtOVIl9cT1rCB0V8WqkjAsRwta93TbwNYoGKsUSChN44lgBNCoHLHzquYKrU6qZ8lolCIN0Rh6cP0Q3U6I6IXILYOQI513hJaSKAorFpuHXJNfVlpRtmYBk1Su1obZr5dnKAO+L10Hrj3WZW+E3qh6IszE37F6EB+68mGpvKm4eb9bFrlzrok7fvr0Kfv727dvWRmdVTJHw0qiiCUSZ6wCK+7XL/AcsgNyL74DQQ730sv78Su7+t/A36MdY0sW5o40ahslXr58aZ5HtZB8GH64m9EmMZ7FpYw4T6QnrZfgenrhFxaSiSGXtPnz57e9TkNZLvTjeqhr734CNtrK41L40sUQckmj1lGKQ0rC37x544r8eNXRpnVE3ZZY7zXo8NomiO0ZUCj2uHz58rbXoZ6gc0uA+F6ZeKS/jhRDUq8MKrTho9fEkihMmhxtBI1DxKFY9XLpVcSkfoi8JGnToZO5sU5aiDQIW716ddt7ZLYtMQlhECdBGXZZMWldY5BHm5xgAroWj4C0hbYkSc/jBmggIrXJWlZM6pSETsEPGqZOndr2uuuR5rF169a2HoHPdurUKZM4CO1WTPqaDaAd+GFGKdIQkxAn9RuEWcTRyN2KSUgiSgF5aWzPTeA/lN5rZubMmR2bE4SIC4nJoltgAV/dVefZm72AtctUCJU2CMJ327hxY9t7EHbkyJFseq+EJSY16RPo3Dkq1kkr7+q0bNmyDuLQcZBEPYmHVdOBiJyIlrRDq41YPWfXOxUysi5fvtyaj+2BpcnsUV/oSoEMOk2CQGlr4ckhBwaetBhjCwH0ZHtJROPJkyc7UjcYLDjmrH7ADTEBXFfOYmB0k9oYBOjJ8b4aOYSe7QkKcYhFlq3QYLQhSidNmtS2RATwy8YOM3EQJsUjKiaWZ+vZToUQgzhkHXudb/PW5YMHD9yZM2faPsMwoc7RciYJXbGuBqJ1UIGKKLv915jsvgtJxCZDubdXr165mzdvtr1Hz5LONA8jrUwKPqsmVesKa49S3Q4WxmRPUEYdTjgiUcfUwLx589ySJUva3oMkP6IYddq6HMS4o55xBJBUeRjzfa4Zdeg56QZ43LhxoyPo7Lf1kNt7oO8wWAbNwaYjIv5lhyS7kRf96dvm5Jah8vfvX3flyhX35cuX6HfzFHOToS1H4BenCaHvO8pr8iDuwoUL7tevX+b5ZdbBair0xkFIlFDlW4ZknEClsp/TzXyAKVOmmHWFVSbDNw1l1+4f90U6IY/q4V27dpnE9bJ+v87QEydjqx/UamVVPRG+mwkNTYN+9tjkwzEx+atCm/X9WvWtDtAb68Wy9LXa1UmvCDDIpPkyOQ5ZwSzJ4jMrvFcr0rSjOUh+GcT4LSg5ugkW1Io0/SCDQBojh0hPlaJdah+tkVYrnTZowP8iq1F1TgMBBauufyB33x1v+NWFYmT5KmppgHC+NkAgbmRkpD3yn9QIseXymoTQFGQmIOKTxiZIWpvAatenVqRVXf2nTrAWMsPnKrMZHz6bJq5jvce6QK8J1cQNgKxlJapMPdZSR64/UivS9NztpkVEdKcrs5alhhWP9NeqlfWopzhZScI6QxseegZRGeg5a8C3Re1Mfl1ScP36ddcUaMuv24iOJtz7sbUjTS4qBvKmstYJoUauiuD3k5qhyr7QdUHMeCgLa1Ear9NquemdXgmum4fvJ6w1lqsuDhNrg1qSpleJK7K3TF0Q2jSd94uSZ60kK1e3qyVpQK6PVWXp2/FC3mp6jBhKKOiY2h3gtUV64TWM6wDETRPLDfSakXmH3w8g9Jlug8ZtTt4kVF0kLUYYmCCtD/DrQ5YhMGbA9L3ucdjh0y8kOHW5gU/VEEmJTcL4Pz/f7mgoAbYkAAAAAElFTkSuQmCC"
}
}
]
}
],
)
print(response)
LiteLLM/Ollama Docker Image​
For Ollama LiteLLM Provides a Docker Image for an OpenAI API compatible server for local LLMs - llama2, mistral, codellama
An OpenAI API compatible server for local LLMs - llama2, mistral, codellama​
Quick Start:​
Docker Hub: For ARM Processors: https://hub.docker.com/repository/docker/litellm/ollama/general For Intel/AMD Processors: to be added
docker pull litellm/ollama
docker run --name ollama litellm/ollama
Test the server container​
On the docker container run the test.py
file using python3 test.py
Making a request to this server​
import openai
api_base = f"http://0.0.0.0:4000" # base url for server
openai.api_base = api_base
openai.api_key = "temp-key"
print(openai.api_base)
print(f'LiteLLM: response from proxy with streaming')
response = openai.chat.completions.create(
model="ollama/llama2",
messages = [
{
"role": "user",
"content": "this is a test request, acknowledge that you got it"
}
],
stream=True
)
for chunk in response:
print(f'LiteLLM: streaming response from proxy {chunk}')
Responses from this server​
{
"object": "chat.completion",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": " Hello! I acknowledge receipt of your test request. Please let me know if there's anything else I can assist you with.",
"role": "assistant",
"logprobs": null
}
}
],
"id": "chatcmpl-403d5a85-2631-4233-92cb-01e6dffc3c39",
"created": 1696992706.619709,
"model": "ollama/llama2",
"usage": {
"prompt_tokens": 18,
"completion_tokens": 25,
"total_tokens": 43
}
}