Skip to main content

SAP Generative AI Hub

LiteLLM supports SAP Generative AI Hub's Orchestration Service.

PropertyDetails
DescriptionSAP's Generative AI Hub provides access to OpenAI, Anthropic, Gemini, Mistral, NVIDIA, Amazon, and SAP LLMs through the AI Core orchestration service.
Provider Route on LiteLLMsap/
Supported Endpoints/chat/completions, /embeddings
API ReferenceSAP AI Core Documentation

Prerequisites

Before you begin, ensure you have:

  1. SAP BTP Account with access to SAP AI Core
  2. AI Core Service Instance provisioned in your subaccount
  3. Service Key created for your AI Core instance (this contains your credentials)
  4. Resource Group with deployed AI models (check with your SAP administrator)
Where to Find Your Credentials

Your credentials come from the Service Key you create in SAP BTP Cockpit:

  1. Navigate to your SubaccountInstances and Subscriptions
  2. Find your AI Core instance and click on it
  3. Go to Service Keys and create one (or use existing)
  4. The JSON contains all values needed below

The service key JSON looks like this:

{
"clientid": "sb-abc123...",
"clientsecret": "xyz789...",
"url": "https://myinstance.authentication.eu10.hana.ondemand.com",
"serviceurls": {
"AI_API_URL": "https://api.ai.prod.eu-central-1.aws.ml.hana.ondemand.com"
}
}
Resource Group

The resource group is typically configured separately in your AI Core deployment, not in the service key itself. You can set it via the AICORE_RESOURCE_GROUP environment variable (defaults to "default").

Quick Start

Step 1: Install LiteLLM

pip install litellm

Step 2: Set Your Credentials

Choose one of these authentication methods:

The simplest approach - paste your entire service key as a single environment variable. The service key must be wrapped in a credentials object:

export AICORE_SERVICE_KEY='{
"credentials": {
"clientid": "your-client-id",
"clientsecret": "your-client-secret",
"url": "https://<your-instance>.authentication.sap.hana.ondemand.com",
"serviceurls": {
"AI_API_URL": "https://api.ai.<your-region>.aws.ml.hana.ondemand.com"
}
}
}'
export AICORE_RESOURCE_GROUP="default"

Step 3: Make Your First Request

test_sap.py
from litellm import completion

response = completion(
model="sap/gpt-4o",
messages=[{"role": "user", "content": "Hello from LiteLLM!"}]
)
print(response.choices[0].message.content)

Run it:

python test_sap.py

Expected output:

Hello! How can I assist you today?

Step 4: Verify Your Setup (Optional)

Test that everything is working with this diagnostic script:

verify_sap_setup.py
import os
import litellm

# Enable debug logging to see what's happening
import os
os.environ["LITELLM_LOG"] = "DEBUG"

# Either use AICORE_SERVICE_KEY (contains all credentials including resourcegroup)
# OR use individual variables (all required together)
individual_vars = ["AICORE_AUTH_URL", "AICORE_CLIENT_ID", "AICORE_CLIENT_SECRET", "AICORE_BASE_URL", "AICORE_RESOURCE_GROUP"]

print("=== SAP Gen AI Hub Setup Verification ===\n")

# Check for service key method
if os.environ.get("AICORE_SERVICE_KEY"):
print("✓ Using AICORE_SERVICE_KEY authentication (includes resource group)")
else:
# Check individual variables
missing = [v for v in individual_vars if not os.environ.get(v)]
if missing:
print(f"✗ Missing environment variables: {missing}")
else:
print("✓ Using individual variable authentication")
print(f"✓ Resource group: {os.environ.get('AICORE_RESOURCE_GROUP')}")

# Test API connection
print("\n=== Testing API Connection ===\n")
try:
response = litellm.completion(
model="sap/gpt-4o",
messages=[{"role": "user", "content": "Say 'Connection successful!' and nothing else."}],
max_tokens=20
)
print(f"✓ API Response: {response.choices[0].message.content}")
print("\n🎉 Setup complete! You're ready to use SAP Gen AI Hub with LiteLLM.")
except Exception as e:
print(f"✗ API Error: {e}")
print("\nTroubleshooting tips:")
print(" 1. Verify your service key credentials are correct")
print(" 2. Check that 'gpt-4o' is deployed in your resource group")
print(" 3. Ensure your SAP AI Core instance is running")

Run the verification:

python verify_sap_setup.py

Expected output on success:

=== SAP Gen AI Hub Setup Verification ===

✓ Using AICORE_SERVICE_KEY authentication
✓ Resource group: default

=== Testing API Connection ===

✓ API Response: Connection successful!

🎉 Setup complete! You're ready to use SAP Gen AI Hub with LiteLLM.

Authentication

SAP Generative AI Hub uses OAuth2 service keys for authentication. See Quick Start for setup instructions.

Environment Variables Reference

VariableRequiredDescription
AICORE_SERVICE_KEYYes*Complete service key JSON (recommended method)
AICORE_RESOURCE_GROUPYesYour AI Core resource group name
AICORE_AUTH_URLYes*OAuth token URL (alternative to service key)
AICORE_CLIENT_IDYes*OAuth client ID (alternative to service key)
AICORE_CLIENT_SECRETYes*OAuth client secret (alternative to service key)
AICORE_BASE_URLYes*AI Core API base URL (alternative to service key)

*Choose either AICORE_SERVICE_KEY OR the individual variables (AICORE_AUTH_URL, AICORE_CLIENT_ID, AICORE_CLIENT_SECRET, AICORE_BASE_URL).

Model Naming Conventions

Understanding model naming is crucial for using SAP Gen AI Hub correctly. The naming pattern differs depending on whether you're using the SDK directly or through the proxy.

Direct SDK Usage

When calling LiteLLM's SDK directly, you must include the sap/ prefix in the model name:

# Correct - includes sap/ prefix
model="sap/gpt-4o"
model="sap/anthropic--claude-4.5-sonnet"
model="sap/gemini-2.5-pro"

# Incorrect - missing prefix
model="gpt-4o" # ❌ Won't work

Proxy Usage

When using the LiteLLM Proxy, you use the friendly model_name defined in your configuration. The proxy automatically handles the sap/ prefix routing.

# In config.yaml, define the mapping
model_list:
- model_name: gpt-4o # ← Use this name in client requests
litellm_params:
model: sap/gpt-4o # ← Proxy handles the sap/ prefix
# Client request - no sap/ prefix needed
client.chat.completions.create(
model="gpt-4o", # ✓ Correct for proxy usage
messages=[...]
)

Anthropic Models Special Syntax

Anthropic models use a double-dash (--) prefix convention:

ProviderModel ExampleLiteLLM Format
OpenAIGPT-4osap/gpt-4o
AnthropicClaude 4.5 Sonnetsap/anthropic--claude-4.5-sonnet
GoogleGemini 2.5 Prosap/gemini-2.5-pro
MistralMistral Largesap/mistral-large

Quick Reference Table

Usage TypeModel FormatExample
Direct SDKsap/<model-name>sap/gpt-4o
Direct SDK (Anthropic)sap/anthropic--<model>sap/anthropic--claude-4.5-sonnet
Proxy Client<friendly-name>gpt-4o or claude-sonnet

Using the Python SDK

The LiteLLM Python SDK automatically detects your authentication method. Simply set your environment variables and make requests.

Basic Completion
from litellm import completion

# Assumes AICORE_AUTH_URL, AICORE_CLIENT_ID, etc. are set
response = completion(
model="sap/anthropic--claude-4.5-sonnet",
messages=[{"role": "user", "content": "Explain quantum computing"}]
)
print(response.choices[0].message.content)

Both authentication methods (individual variables or service key JSON) work automatically - no code changes required.

Using the Proxy Server

The LiteLLM Proxy provides a unified OpenAI-compatible API for your SAP models.

Configuration

Create a config.yaml file in your project directory with your model mappings and credentials:

config.yaml
model_list:
# OpenAI models
- model_name: gpt-5
litellm_params:
model: sap/gpt-5

# Anthropic models (note the double-dash)
- model_name: claude-sonnet
litellm_params:
model: sap/anthropic--claude-4.5-sonnet

- model_name: claude-opus
litellm_params:
model: sap/anthropic--claude-4.5-opus

# Embeddings
- model_name: text-embedding-3-small
litellm_params:
model: sap/text-embedding-3-small

litellm_settings:
drop_params: true
set_verbose: false
request_timeout: 600
num_retries: 2
forward_client_headers_to_llm_api: ["anthropic-version"]

general_settings:
master_key: "sk-1234" # Enter here your desired master key starting with 'sk-'.

# UI Admin is not required but helpful including the management of keys for your team(s). If you are using a database, these parameters are required:
database_url: "Enter you database URL."
UI_USERNAME: "Your desired UI admin account name"
UI_PASSWORD: "Your desired and strong pwd"

# Authentication
environment_variables:
AICORE_SERVICE_KEY: '{"credentials": {"clientid": "...", "clientsecret": "...", "url": "...", "serviceurls": {"AI_API_URL": "..."}}}'
AICORE_RESOURCE_GROUP: "default"

Starting the Proxy

Start Proxy
litellm --config config.yaml

The proxy will start on http://localhost:4000 by default.

Making Requests

Test Request
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-4o",
"messages": [{"role": "user", "content": "Hello"}]
}'

Features

Streaming Responses

Stream responses in real-time for better user experience:

Streaming Chat Completion
from litellm import completion

response = completion(
model="sap/gpt-4o",
messages=[{"role": "user", "content": "Count from 1 to 10"}],
stream=True
)

for chunk in response:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end="", flush=True)

Structured Output

Use JSON Schema for structured output with strict validation:

JSON Schema Response
from litellm import completion

response = completion(
model="sap/gpt-4o",
messages=[{
"role": "user",
"content": "Generate info about Tokyo"
}],
response_format={
"type": "json_schema",
"json_schema": {
"name": "city_info",
"schema": {
"type": "object",
"properties": {
"name": {"type": "string"},
"population": {"type": "number"},
"country": {"type": "string"}
},
"required": ["name", "population", "country"],
"additionalProperties": False
},
"strict": True
}
}
)

print(response.choices[0].message.content)
# Output: {"name":"Tokyo","population":37000000,"country":"Japan"}

JSON Object Format

For flexible JSON output without schema validation:

JSON Object Response
from litellm import completion

response = completion(
model="sap/gpt-4o",
messages=[{
"role": "user",
"content": "Generate a person object in JSON format with name and age"
}],
response_format={"type": "json_object"}
)

print(response.choices[0].message.content)
SAP Platform Requirement

When using json_object type, SAP's orchestration service requires the word "json" to appear in your prompt. This ensures explicit intent for JSON formatting. For schema-validated output without this requirement, use json_schema instead (recommended).

Multi-turn Conversations

Maintain conversation context across multiple turns:

Multi-turn Conversation
from litellm import completion

response = completion(
model="sap/gpt-4o",
messages=[
{"role": "user", "content": "My name is Alice"},
{"role": "assistant", "content": "Hello Alice! Nice to meet you."},
{"role": "user", "content": "What is my name?"}
]
)

print(response.choices[0].message.content)
# Output: Your name is Alice.

Embeddings

Generate vector embeddings for semantic search and retrieval:

Create Embeddings
from litellm import embedding

response = embedding(
model="sap/text-embedding-3-small",
input=["Hello world", "Machine learning is fascinating"]
)

print(response.data[0]["embedding"]) # Vector representation

Reference

Supported Parameters

ParameterTypeDescription
modelstringModel identifier (with sap/ prefix for SDK)
messagesarrayConversation messages
temperaturefloatControls randomness (0-2)
max_tokensintegerMaximum tokens in response
top_pfloatNucleus sampling threshold
streambooleanEnable streaming responses
response_formatobjectOutput format (json_object, json_schema)
toolsarrayFunction calling tool definitions
tool_choicestring/objectTool selection behavior

Supported Models

For the complete and up-to-date list of available models provided by SAP Gen AI Hub, please refer to the SAP AI Core Generative AI Hub documentation.

Model Availability

Model availability varies by SAP deployment region and your subscription. Contact your SAP administrator to confirm which models are available in your environment.

Troubleshooting

Authentication Errors

If you receive authentication errors:

  1. Verify all required environment variables are set correctly
  2. Check that your service key hasn't expired
  3. Confirm your resource group has access to the desired models
  4. Ensure the AICORE_AUTH_URL and AICORE_BASE_URL match your SAP region

Model Not Found

If a model returns "not found":

  1. Verify the model is available in your SAP deployment
  2. Check you're using the correct model name format (sap/ prefix for SDK)
  3. Confirm your resource group has access to that specific model
  4. For Anthropic models, ensure you're using the anthropic-- double-dash prefix

Rate Limiting

SAP Gen AI Hub enforces rate limits based on your subscription. If you hit limits:

  1. Implement exponential backoff retry logic
  2. Consider using the proxy's built-in rate limiting features
  3. Contact your SAP administrator to review quota allocations