FriendliAI
We support ALL FriendliAI models, just set friendliai/
as a prefix when sending completion requests
API Key​
# env variable
os.environ['FRIENDLI_TOKEN']
os.environ['FRIENDLI_API_BASE'] # Optional. Set this when using dedicated endpoint.
Sample Usage​
from litellm import completion
import os
os.environ['FRIENDLI_TOKEN'] = ""
response = completion(
model="friendliai/mixtral-8x7b-instruct-v0-1",
messages=[
{"role": "user", "content": "hello from litellm"}
],
)
print(response)
Sample Usage - Streaming​
from litellm import completion
import os
os.environ['FRIENDLI_TOKEN'] = ""
response = completion(
model="friendliai/mixtral-8x7b-instruct-v0-1",
messages=[
{"role": "user", "content": "hello from litellm"}
],
stream=True
)
for chunk in response:
print(chunk)
Supported Models​
Serverless Endpoints​
We support ALL FriendliAI AI models, just set friendliai/
as a prefix when sending completion requests
Model Name | Function Call |
---|---|
mixtral-8x7b-instruct | completion(model="friendliai/mixtral-8x7b-instruct-v0-1", messages) |
meta-llama-3-8b-instruct | completion(model="friendliai/meta-llama-3-8b-instruct", messages) |
meta-llama-3-70b-instruct | completion(model="friendliai/meta-llama-3-70b-instruct", messages) |
Dedicated Endpoints​
model="friendliai/$ENDPOINT_ID:$ADAPTER_ROUTE"