Skip to main content

Cerebras

https://inference-docs.cerebras.ai/api-reference/chat-completions

tip

We support ALL Cerebras models, just set model=cerebras/<any-model-on-cerebras> as a prefix when sending litellm requests

API Key​

# env variable
os.environ['CEREBRAS_API_KEY']

Sample Usage​

from litellm import completion
import os

os.environ['CEREBRAS_API_KEY'] = ""
response = completion(
model="cerebras/meta/llama3-70b-instruct",
messages=[
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
max_tokens=10,
response_format={ "type": "json_object" },
seed=123,
stop=["\n\n"],
temperature=0.2,
top_p=0.9,
tool_choice="auto",
tools=[],
user="user",
)
print(response)

Sample Usage - Streaming​

from litellm import completion
import os

os.environ['CEREBRAS_API_KEY'] = ""
response = completion(
model="cerebras/meta/llama3-70b-instruct",
messages=[
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
stream=True,
max_tokens=10,
response_format={ "type": "json_object" },
seed=123,
stop=["\n\n"],
temperature=0.2,
top_p=0.9,
tool_choice="auto",
tools=[],
user="user",
)

for chunk in response:
print(chunk)

Usage with LiteLLM Proxy Server​

Here's how to call a Cerebras model with the LiteLLM Proxy Server

  1. Modify the config.yaml

    model_list:
    - model_name: my-model
    litellm_params:
    model: cerebras/<your-model-name> # add cerebras/ prefix to route as Cerebras provider
    api_key: api-key # api key to send your model
  1. Start the proxy

    $ litellm --config /path/to/config.yaml
  2. Send Request to LiteLLM Proxy Server

    import openai
    client = openai.OpenAI(
    api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
    base_url="http://0.0.0.0:4000" # litellm-proxy-base url
    )

    response = client.chat.completions.create(
    model="my-model",
    messages = [
    {
    "role": "user",
    "content": "what llm are you"
    }
    ],
    )

    print(response)