Mistral AI API
API Key​
# env variable
os.environ['MISTRAL_API_KEY']
Sample Usage​
from litellm import completion
import os
os.environ['MISTRAL_API_KEY'] = ""
response = completion(
model="mistral/mistral-tiny",
messages=[
{"role": "user", "content": "hello from litellm"}
],
)
print(response)
Sample Usage - Streaming​
from litellm import completion
import os
os.environ['MISTRAL_API_KEY'] = ""
response = completion(
model="mistral/mistral-tiny",
messages=[
{"role": "user", "content": "hello from litellm"}
],
stream=True
)
for chunk in response:
print(chunk)
Usage with LiteLLM Proxy​
1. Set Mistral Models on config.yaml​
model_list:
- model_name: mistral-small-latest
litellm_params:
model: mistral/mistral-small-latest
api_key: "os.environ/MISTRAL_API_KEY" # ensure you have `MISTRAL_API_KEY` in your .env
2. Start Proxy​
litellm --config config.yaml
3. Test it​
- Curl Request
- OpenAI v1.0.0+
- Langchain
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "mistral-small-latest",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}
'
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(model="mistral-small-latest", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
model = "mistral-small-latest",
temperature=0.1
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
Supported Models​
info
All models listed here https://docs.mistral.ai/platform/endpoints are supported. We actively maintain the list of models, pricing, token window, etc. here.
Model Name | Function Call | Reasoning Support |
---|---|---|
Mistral Small | completion(model="mistral/mistral-small-latest", messages) | No |
Mistral Medium | completion(model="mistral/mistral-medium-latest", messages) | No |
Mistral Large 2 | completion(model="mistral/mistral-large-2407", messages) | No |
Mistral Large Latest | completion(model="mistral/mistral-large-latest", messages) | No |
Magistral Small | completion(model="mistral/magistral-small-2506", messages) | Yes |
Magistral Medium | completion(model="mistral/magistral-medium-2506", messages) | Yes |
Mistral 7B | completion(model="mistral/open-mistral-7b", messages) | No |
Mixtral 8x7B | completion(model="mistral/open-mixtral-8x7b", messages) | No |
Mixtral 8x22B | completion(model="mistral/open-mixtral-8x22b", messages) | No |
Codestral | completion(model="mistral/codestral-latest", messages) | No |
Mistral NeMo | completion(model="mistral/open-mistral-nemo", messages) | No |
Mistral NeMo 2407 | completion(model="mistral/open-mistral-nemo-2407", messages) | No |
Codestral Mamba | completion(model="mistral/open-codestral-mamba", messages) | No |
Codestral Mamba | completion(model="mistral/codestral-mamba-latest"", messages) | No |
Function Calling​
from litellm import completion
# set env
os.environ["MISTRAL_API_KEY"] = "your-api-key"
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
response = completion(
model="mistral/mistral-large-latest",
messages=messages,
tools=tools,
tool_choice="auto",
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)
Reasoning Capabilities (Magistral Models)​
Mistral's Magistral models support advanced reasoning capabilities that allow the model to think step-by-step before providing answers. LiteLLM provides seamless integration with these reasoning features through OpenAI-compatible parameters.
Supported Magistral Models​
Model Name | Function Call |
---|---|
Magistral Small | completion(model="mistral/magistral-small-2506", messages) |
Magistral Medium | completion(model="mistral/magistral-medium-2506", messages) |
Using Reasoning Effort​
The reasoning_effort
parameter controls how much effort the model puts into reasoning. When used with magistral models.
from litellm import completion
import os
os.environ['MISTRAL_API_KEY'] = "your-api-key"
response = completion(
model="mistral/magistral-medium-2506",
messages=[
{"role": "user", "content": "What is 15 multiplied by 7?"}
],
reasoning_effort="medium" # Options: "low", "medium", "high"
)
print(response)
Example with System Message​
If you already have a system message, LiteLLM will prepend the reasoning instructions:
response = completion(
model="mistral/magistral-medium-2506",
messages=[
{"role": "system", "content": "You are a helpful math tutor."},
{"role": "user", "content": "Explain how to solve quadratic equations."}
],
reasoning_effort="high"
)
# The system message becomes:
# "When solving problems, think step-by-step in <think> tags before providing your final answer...
#
# You are a helpful math tutor."
Usage with LiteLLM Proxy​
You can also use reasoning capabilities through the LiteLLM proxy:
- Curl Request
- OpenAI v1.0.0+
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "magistral-medium-2506",
"messages": [
{
"role": "user",
"content": "What is the square root of 144? Show your reasoning."
}
],
"reasoning_effort": "medium"
}'
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(
model="magistral-medium-2506",
messages=[
{
"role": "user",
"content": "Calculate the area of a circle with radius 5. Show your work."
}
],
reasoning_effort="high"
)
print(response)
Important Notes​
- Model Compatibility: Reasoning parameters only work with magistral models
- Backward Compatibility: Non-magistral models will ignore reasoning parameters and work normally
Sample Usage - Embedding​
from litellm import embedding
import os
os.environ['MISTRAL_API_KEY'] = ""
response = embedding(
model="mistral/mistral-embed",
input=["good morning from litellm"],
)
print(response)
Supported Models​
All models listed here https://docs.mistral.ai/platform/endpoints are supported
Model Name | Function Call |
---|---|
Mistral Embeddings | embedding(model="mistral/mistral-embed", input) |