Skip to main content

Mistral AI API

https://docs.mistral.ai/api/

API Key​

# env variable
os.environ['MISTRAL_API_KEY']

Sample Usage​

from litellm import completion
import os

os.environ['MISTRAL_API_KEY'] = ""
response = completion(
model="mistral/mistral-tiny",
messages=[
{"role": "user", "content": "hello from litellm"}
],
)
print(response)

Sample Usage - Streaming​

from litellm import completion
import os

os.environ['MISTRAL_API_KEY'] = ""
response = completion(
model="mistral/mistral-tiny",
messages=[
{"role": "user", "content": "hello from litellm"}
],
stream=True
)

for chunk in response:
print(chunk)

Usage with LiteLLM Proxy​

1. Set Mistral Models on config.yaml​

model_list:
- model_name: mistral-small-latest
litellm_params:
model: mistral/mistral-small-latest
api_key: "os.environ/MISTRAL_API_KEY" # ensure you have `MISTRAL_API_KEY` in your .env

2. Start Proxy​

litellm --config config.yaml

3. Test it​

curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "mistral-small-latest",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}
'

Supported Models​

info

All models listed here https://docs.mistral.ai/platform/endpoints are supported. We actively maintain the list of models, pricing, token window, etc. here.

Model NameFunction CallReasoning Support
Mistral Smallcompletion(model="mistral/mistral-small-latest", messages)No
Mistral Mediumcompletion(model="mistral/mistral-medium-latest", messages)No
Mistral Large 2completion(model="mistral/mistral-large-2407", messages)No
Mistral Large Latestcompletion(model="mistral/mistral-large-latest", messages)No
Magistral Smallcompletion(model="mistral/magistral-small-2506", messages)Yes
Magistral Mediumcompletion(model="mistral/magistral-medium-2506", messages)Yes
Mistral 7Bcompletion(model="mistral/open-mistral-7b", messages)No
Mixtral 8x7Bcompletion(model="mistral/open-mixtral-8x7b", messages)No
Mixtral 8x22Bcompletion(model="mistral/open-mixtral-8x22b", messages)No
Codestralcompletion(model="mistral/codestral-latest", messages)No
Mistral NeMocompletion(model="mistral/open-mistral-nemo", messages)No
Mistral NeMo 2407completion(model="mistral/open-mistral-nemo-2407", messages)No
Codestral Mambacompletion(model="mistral/open-codestral-mamba", messages)No
Codestral Mambacompletion(model="mistral/codestral-mamba-latest"", messages)No

Function Calling​

from litellm import completion

# set env
os.environ["MISTRAL_API_KEY"] = "your-api-key"

tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]

response = completion(
model="mistral/mistral-large-latest",
messages=messages,
tools=tools,
tool_choice="auto",
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)

Reasoning Capabilities (Magistral Models)​

Mistral's Magistral models support advanced reasoning capabilities that allow the model to think step-by-step before providing answers. LiteLLM provides seamless integration with these reasoning features through OpenAI-compatible parameters.

Supported Magistral Models​

Model NameFunction Call
Magistral Smallcompletion(model="mistral/magistral-small-2506", messages)
Magistral Mediumcompletion(model="mistral/magistral-medium-2506", messages)

Using Reasoning Effort​

The reasoning_effort parameter controls how much effort the model puts into reasoning. When used with magistral models.

from litellm import completion
import os

os.environ['MISTRAL_API_KEY'] = "your-api-key"

response = completion(
model="mistral/magistral-medium-2506",
messages=[
{"role": "user", "content": "What is 15 multiplied by 7?"}
],
reasoning_effort="medium" # Options: "low", "medium", "high"
)

print(response)

Example with System Message​

If you already have a system message, LiteLLM will prepend the reasoning instructions:

response = completion(
model="mistral/magistral-medium-2506",
messages=[
{"role": "system", "content": "You are a helpful math tutor."},
{"role": "user", "content": "Explain how to solve quadratic equations."}
],
reasoning_effort="high"
)

# The system message becomes:
# "When solving problems, think step-by-step in <think> tags before providing your final answer...
#
# You are a helpful math tutor."

Usage with LiteLLM Proxy​

You can also use reasoning capabilities through the LiteLLM proxy:

curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "magistral-medium-2506",
"messages": [
{
"role": "user",
"content": "What is the square root of 144? Show your reasoning."
}
],
"reasoning_effort": "medium"
}'

Important Notes​

  • Model Compatibility: Reasoning parameters only work with magistral models
  • Backward Compatibility: Non-magistral models will ignore reasoning parameters and work normally

Sample Usage - Embedding​

from litellm import embedding
import os

os.environ['MISTRAL_API_KEY'] = ""
response = embedding(
model="mistral/mistral-embed",
input=["good morning from litellm"],
)
print(response)

Supported Models​

All models listed here https://docs.mistral.ai/platform/endpoints are supported

Model NameFunction Call
Mistral Embeddingsembedding(model="mistral/mistral-embed", input)