Skip to main content

Bedrock Imported Models

Bedrock Imported Models (Deepseek, Deepseek R1, Qwen, OpenAI-compatible models)

Deepseek R1​

This is a separate route, as the chat template is different.

PropertyDetails
Provider Routebedrock/deepseek_r1/{model_arn}
Provider DocumentationBedrock Imported Models, Deepseek Bedrock Imported Model
from litellm import completion
import os

response = completion(
model="bedrock/deepseek_r1/arn:aws:bedrock:us-east-1:086734376398:imported-model/r4c4kewx2s0n", # bedrock/deepseek_r1/{your-model-arn}
messages=[{"role": "user", "content": "Tell me a joke"}],
)

Deepseek (not R1)​

PropertyDetails
Provider Routebedrock/llama/{model_arn}
Provider DocumentationBedrock Imported Models, Deepseek Bedrock Imported Model

Use this route to call Bedrock Imported Models that follow the llama Invoke Request / Response spec

from litellm import completion
import os

response = completion(
model="bedrock/llama/arn:aws:bedrock:us-east-1:086734376398:imported-model/r4c4kewx2s0n", # bedrock/llama/{your-model-arn}
messages=[{"role": "user", "content": "Tell me a joke"}],
)

Qwen3 Imported Models​

PropertyDetails
Provider Routebedrock/qwen3/{model_arn}
Provider DocumentationBedrock Imported Models, Qwen3 Models
from litellm import completion
import os

response = completion(
model="bedrock/qwen3/arn:aws:bedrock:us-east-1:086734376398:imported-model/your-qwen3-model", # bedrock/qwen3/{your-model-arn}
messages=[{"role": "user", "content": "Tell me a joke"}],
max_tokens=100,
temperature=0.7
)

OpenAI-Compatible Imported Models (Qwen 2.5 VL, etc.)​

Use this route for Bedrock imported models that follow the OpenAI Chat Completions API spec. This includes models like Qwen 2.5 VL that accept OpenAI-formatted messages with support for vision (images), tool calling, and other OpenAI features.

PropertyDetails
Provider Routebedrock/openai/{model_arn}
Provider DocumentationBedrock Imported Models
Supported FeaturesVision (images), tool calling, streaming, system messages

LiteLLMSDK Usage​

Basic Usage

from litellm import completion

response = completion(
model="bedrock/openai/arn:aws:bedrock:us-east-1:046319184608:imported-model/0m2lasirsp6z", # bedrock/openai/{your-model-arn}
messages=[{"role": "user", "content": "Tell me a joke"}],
max_tokens=300,
temperature=0.5
)

With Vision (Images)

import base64
from litellm import completion

# Load and encode image
with open("image.jpg", "rb") as f:
image_base64 = base64.b64encode(f.read()).decode("utf-8")

response = completion(
model="bedrock/openai/arn:aws:bedrock:us-east-1:046319184608:imported-model/0m2lasirsp6z",
messages=[
{
"role": "system",
"content": "You are a helpful assistant that can analyze images."
},
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}
}
]
}
],
max_tokens=300,
temperature=0.5
)

Comparing Multiple Images

import base64
from litellm import completion

# Load images
with open("image1.jpg", "rb") as f:
image1_base64 = base64.b64encode(f.read()).decode("utf-8")
with open("image2.jpg", "rb") as f:
image2_base64 = base64.b64encode(f.read()).decode("utf-8")

response = completion(
model="bedrock/openai/arn:aws:bedrock:us-east-1:046319184608:imported-model/0m2lasirsp6z",
messages=[
{
"role": "system",
"content": "You are a helpful assistant that can analyze images."
},
{
"role": "user",
"content": [
{"type": "text", "text": "Spot the difference between these two images?"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image1_base64}"}
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image2_base64}"}
}
]
}
],
max_tokens=300,
temperature=0.5
)

LiteLLM Proxy Usage (AI Gateway)​

1. Add to config

model_list:
- model_name: qwen-25vl-72b
litellm_params:
model: bedrock/openai/arn:aws:bedrock:us-east-1:046319184608:imported-model/0m2lasirsp6z

2. Start proxy

litellm --config /path/to/config.yaml

# RUNNING at http://0.0.0.0:4000

3. Test it!

Basic text request:

curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "qwen-25vl-72b",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
"max_tokens": 300
}'

With vision (image):

curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "qwen-25vl-72b",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant that can analyze images."
},
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{
"type": "image_url",
"image_url": {"url": "..."}
}
]
}
],
"max_tokens": 300,
"temperature": 0.5
}'