Bedrock Imported Models
Bedrock Imported Models (Deepseek, Deepseek R1, Qwen, OpenAI-compatible models)
Deepseek R1​
This is a separate route, as the chat template is different.
| Property | Details |
|---|---|
| Provider Route | bedrock/deepseek_r1/{model_arn} |
| Provider Documentation | Bedrock Imported Models, Deepseek Bedrock Imported Model |
- SDK
- Proxy
from litellm import completion
import os
response = completion(
model="bedrock/deepseek_r1/arn:aws:bedrock:us-east-1:086734376398:imported-model/r4c4kewx2s0n", # bedrock/deepseek_r1/{your-model-arn}
messages=[{"role": "user", "content": "Tell me a joke"}],
)
1. Add to config
model_list:
- model_name: DeepSeek-R1-Distill-Llama-70B
litellm_params:
model: bedrock/deepseek_r1/arn:aws:bedrock:us-east-1:086734376398:imported-model/r4c4kewx2s0n
2. Start proxy
litellm --config /path/to/config.yaml
# RUNNING at http://0.0.0.0:4000
3. Test it!
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "DeepSeek-R1-Distill-Llama-70B", # 👈 the 'model_name' in config
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}'
Deepseek (not R1)​
| Property | Details |
|---|---|
| Provider Route | bedrock/llama/{model_arn} |
| Provider Documentation | Bedrock Imported Models, Deepseek Bedrock Imported Model |
Use this route to call Bedrock Imported Models that follow the llama Invoke Request / Response spec
- SDK
- Proxy
from litellm import completion
import os
response = completion(
model="bedrock/llama/arn:aws:bedrock:us-east-1:086734376398:imported-model/r4c4kewx2s0n", # bedrock/llama/{your-model-arn}
messages=[{"role": "user", "content": "Tell me a joke"}],
)
1. Add to config
model_list:
- model_name: DeepSeek-R1-Distill-Llama-70B
litellm_params:
model: bedrock/llama/arn:aws:bedrock:us-east-1:086734376398:imported-model/r4c4kewx2s0n
2. Start proxy
litellm --config /path/to/config.yaml
# RUNNING at http://0.0.0.0:4000
3. Test it!
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "DeepSeek-R1-Distill-Llama-70B", # 👈 the 'model_name' in config
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}'
Qwen3 Imported Models​
| Property | Details |
|---|---|
| Provider Route | bedrock/qwen3/{model_arn} |
| Provider Documentation | Bedrock Imported Models, Qwen3 Models |
- SDK
- Proxy
from litellm import completion
import os
response = completion(
model="bedrock/qwen3/arn:aws:bedrock:us-east-1:086734376398:imported-model/your-qwen3-model", # bedrock/qwen3/{your-model-arn}
messages=[{"role": "user", "content": "Tell me a joke"}],
max_tokens=100,
temperature=0.7
)
1. Add to config
model_list:
- model_name: Qwen3-32B
litellm_params:
model: bedrock/qwen3/arn:aws:bedrock:us-east-1:086734376398:imported-model/your-qwen3-model
2. Start proxy
litellm --config /path/to/config.yaml
# RUNNING at http://0.0.0.0:4000
3. Test it!
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "Qwen3-32B", # 👈 the 'model_name' in config
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}'
OpenAI-Compatible Imported Models (Qwen 2.5 VL, etc.)​
Use this route for Bedrock imported models that follow the OpenAI Chat Completions API spec. This includes models like Qwen 2.5 VL that accept OpenAI-formatted messages with support for vision (images), tool calling, and other OpenAI features.
| Property | Details |
|---|---|
| Provider Route | bedrock/openai/{model_arn} |
| Provider Documentation | Bedrock Imported Models |
| Supported Features | Vision (images), tool calling, streaming, system messages |
LiteLLMSDK Usage​
Basic Usage
from litellm import completion
response = completion(
model="bedrock/openai/arn:aws:bedrock:us-east-1:046319184608:imported-model/0m2lasirsp6z", # bedrock/openai/{your-model-arn}
messages=[{"role": "user", "content": "Tell me a joke"}],
max_tokens=300,
temperature=0.5
)
With Vision (Images)
import base64
from litellm import completion
# Load and encode image
with open("image.jpg", "rb") as f:
image_base64 = base64.b64encode(f.read()).decode("utf-8")
response = completion(
model="bedrock/openai/arn:aws:bedrock:us-east-1:046319184608:imported-model/0m2lasirsp6z",
messages=[
{
"role": "system",
"content": "You are a helpful assistant that can analyze images."
},
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}
}
]
}
],
max_tokens=300,
temperature=0.5
)
Comparing Multiple Images
import base64
from litellm import completion
# Load images
with open("image1.jpg", "rb") as f:
image1_base64 = base64.b64encode(f.read()).decode("utf-8")
with open("image2.jpg", "rb") as f:
image2_base64 = base64.b64encode(f.read()).decode("utf-8")
response = completion(
model="bedrock/openai/arn:aws:bedrock:us-east-1:046319184608:imported-model/0m2lasirsp6z",
messages=[
{
"role": "system",
"content": "You are a helpful assistant that can analyze images."
},
{
"role": "user",
"content": [
{"type": "text", "text": "Spot the difference between these two images?"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image1_base64}"}
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image2_base64}"}
}
]
}
],
max_tokens=300,
temperature=0.5
)
LiteLLM Proxy Usage (AI Gateway)​
1. Add to config
model_list:
- model_name: qwen-25vl-72b
litellm_params:
model: bedrock/openai/arn:aws:bedrock:us-east-1:046319184608:imported-model/0m2lasirsp6z
2. Start proxy
litellm --config /path/to/config.yaml
# RUNNING at http://0.0.0.0:4000
3. Test it!
Basic text request:
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "qwen-25vl-72b",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
"max_tokens": 300
}'
With vision (image):
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "qwen-25vl-72b",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant that can analyze images."
},
{
"role": "user",
"content": [
{"type": "text", "text": "What is in this image?"},
{
"type": "image_url",
"image_url": {"url": "..."}
}
]
}
],
"max_tokens": 300,
"temperature": 0.5
}'