Skip to main content

Vertex AI SDK

Pass-through endpoints for Vertex AI - call provider-specific endpoint, in native format (no translation).

FeatureSupportedNotes
Cost Trackingsupports all models on /generateContent endpoint
Loggingworks across all integrations
End-user TrackingTell us if you need this
Streaming

Just replace https://REGION-aiplatform.googleapis.com with LITELLM_PROXY_BASE_URL/vertex_ai

Example Usage

curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.0-pro:generateContent \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{
"contents":[{
"role": "user",
"parts":[{"text": "How are you doing today?"}]
}]
}'

Quick Start

Let's call the Vertex AI /generateContent endpoint

  1. Add Vertex AI Credentials to your environment
export DEFAULT_VERTEXAI_PROJECT="" # "adroit-crow-413218"
export DEFAULT_VERTEXAI_LOCATION="" # "us-central1"
export DEFAULT_GOOGLE_APPLICATION_CREDENTIALS="" # "/Users/Downloads/adroit-crow-413218-a956eef1a2a8.json"
  1. Start LiteLLM Proxy
litellm

# RUNNING on http://0.0.0.0:4000
  1. Test it!

Let's call the Google AI Studio token counting endpoint

curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.0-pro:generateContent \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"contents":[{
"role": "user",
"parts":[{"text": "How are you doing today?"}]
}]
}'

Supported API Endpoints

  • Gemini API
  • Embeddings API
  • Imagen API
  • Code Completion API
  • Batch prediction API
  • Tuning API
  • CountTokens API

Authentication to Vertex AI

LiteLLM Proxy Server supports two methods of authentication to Vertex AI:

  1. Pass Vertex Credetials client side to proxy server

  2. Set Vertex AI credentials on proxy server

Usage Examples

Gemini API (Generate Content)

curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.5-flash-001:generateContent \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'

Embeddings API

curl http://localhost:4000/vertex_ai/publishers/google/models/textembedding-gecko@001:predict \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{"instances":[{"content": "gm"}]}'

Imagen API

curl http://localhost:4000/vertex_ai/publishers/google/models/imagen-3.0-generate-001:predict \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{"instances":[{"prompt": "make an otter"}], "parameters": {"sampleCount": 1}}'

Count Tokens API

curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.5-flash-001:countTokens \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'

Tuning API

Create Fine Tuning Job

curl http://localhost:4000/vertex_ai/tuningJobs \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{
"baseModel": "gemini-1.0-pro-002",
"supervisedTuningSpec" : {
"training_dataset_uri": "gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl"
}
}'

Advanced

Pre-requisites

Use this, to avoid giving developers the raw Anthropic API key, but still letting them use Anthropic endpoints.

Use with Virtual Keys

  1. Setup environment
export DATABASE_URL=""
export LITELLM_MASTER_KEY=""

# vertex ai credentials
export DEFAULT_VERTEXAI_PROJECT="" # "adroit-crow-413218"
export DEFAULT_VERTEXAI_LOCATION="" # "us-central1"
export DEFAULT_GOOGLE_APPLICATION_CREDENTIALS="" # "/Users/Downloads/adroit-crow-413218-a956eef1a2a8.json"
litellm

# RUNNING on http://0.0.0.0:4000
  1. Generate virtual key
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'x-litellm-api-key: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{}'

Expected Response

{
...
"key": "sk-1234ewknldferwedojwojw"
}
  1. Test it!
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.0-pro:generateContent \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-d '{
"contents":[{
"role": "user",
"parts":[{"text": "How are you doing today?"}]
}]
}'

Send tags in request headers

Use this if you wants tags to be tracked in the LiteLLM DB and on logging callbacks

Pass tags in request headers as a comma separated list. In the example below the following tags will be tracked

tags: ["vertex-js-sdk", "pass-through-endpoint"]
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.0-pro:generateContent \
-H "Content-Type: application/json" \
-H "x-litellm-api-key: Bearer sk-1234" \
-H "tags: vertex-js-sdk,pass-through-endpoint" \
-d '{
"contents":[{
"role": "user",
"parts":[{"text": "How are you doing today?"}]
}]
}'