Elasticsearch Logging with LiteLLM
Send your LLM requests, responses, costs, and performance data to Elasticsearch for analytics and monitoring using OpenTelemetry.
Quick Start​
1. Start Elasticsearch​
# Using Docker (simplest)
docker run -d \
--name elasticsearch \
-p 9200:9200 \
-e "discovery.type=single-node" \
-e "xpack.security.enabled=false" \
docker.elastic.co/elasticsearch/elasticsearch:8.18.2
2. Set up OpenTelemetry Collector​
Create an OTEL collector configuration file otel_config.yaml
:
receivers:
otlp:
protocols:
grpc:
endpoint: 0.0.0.0:4317
http:
endpoint: 0.0.0.0:4318
processors:
batch:
timeout: 1s
send_batch_size: 1024
exporters:
debug:
verbosity: detailed
otlphttp/elastic:
endpoint: "http://localhost:9200"
headers:
"Content-Type": "application/json"
service:
pipelines:
metrics:
receivers: [otlp]
exporters: [debug, otlphttp/elastic]
traces:
receivers: [otlp]
exporters: [debug, otlphttp/elastic]
logs:
receivers: [otlp]
exporters: [debug, otlphttp/elastic]
Start the OpenTelemetry collector:
docker run -p 4317:4317 -p 4318:4318 \
-v $(pwd)/otel_config.yaml:/etc/otel-collector-config.yaml \
otel/opentelemetry-collector:latest \
--config=/etc/otel-collector-config.yaml
3. Install OpenTelemetry Dependencies​
pip install opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp
4. Configure LiteLLM​
- LiteLLM Proxy
- Python SDK
Create a config.yaml
file:
model_list:
- model_name: gpt-4.1
litellm_params:
model: openai/gpt-4.1
api_key: os.environ/OPENAI_API_KEY
litellm_settings:
callbacks: ["otel"]
general_settings:
otel: true
Set environment variables and start the proxy:
export OTEL_EXPORTER_OTLP_ENDPOINT="http://localhost:4317"
litellm --config config.yaml
Configure OpenTelemetry in your Python code:
import litellm
import os
# Configure OpenTelemetry
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "http://localhost:4317"
# Enable OTEL logging
litellm.callbacks = ["otel"]
# Make your LLM calls
response = litellm.completion(
model="gpt-4.1",
messages=[{"role": "user", "content": "Hello, world!"}]
)
5. Test the Integration​
Make a test request to verify logging is working:
- Test Proxy
- Test Python SDK
curl -X POST "http://localhost:4000/v1/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-4.1",
"messages": [{"role": "user", "content": "Hello from LiteLLM!"}]
}'
import litellm
response = litellm.completion(
model="gpt-4.1",
messages=[{"role": "user", "content": "Hello from LiteLLM!"}],
user="test-user"
)
print("Response:", response.choices[0].message.content)
6. Verify It's Working​
# Check if traces are being created in Elasticsearch
curl "localhost:9200/_search?pretty&size=1"
You should see OpenTelemetry trace data with structured fields for your LLM requests.
7. Visualize in Kibana​
Start Kibana to visualize your LLM telemetry data:
docker run -d --name kibana --link elasticsearch:elasticsearch -p 5601:5601 docker.elastic.co/kibana/kibana:8.18.2
Open Kibana at http://localhost:5601 and create an index pattern for your LiteLLM traces:
Production Setup​
With Elasticsearch Cloud:
Update your otel_config.yaml
:
exporters:
otlphttp/elastic:
endpoint: "https://your-deployment.es.region.cloud.es.io"
headers:
"Authorization": "Bearer your-api-key"
"Content-Type": "application/json"
Docker Compose (Full Stack):
# docker-compose.yml
version: '3.8'
services:
elasticsearch:
image: docker.elastic.co/elasticsearch/elasticsearch:8.18.2
environment:
- discovery.type=single-node
- xpack.security.enabled=false
ports:
- "9200:9200"
otel-collector:
image: otel/opentelemetry-collector:latest
command: ["--config=/etc/otel-collector-config.yaml"]
volumes:
- ./otel_config.yaml:/etc/otel-collector-config.yaml
ports:
- "4317:4317"
- "4318:4318"
depends_on:
- elasticsearch
litellm:
image: ghcr.io/berriai/litellm:main-latest
ports:
- "4000:4000"
environment:
- OPENAI_API_KEY=${OPENAI_API_KEY}
- OTEL_EXPORTER_OTLP_ENDPOINT=http://otel-collector:4317
command: ["--config", "/app/config.yaml"]
volumes:
- ./config.yaml:/app/config.yaml
depends_on:
- otel-collector
config.yaml:
model_list:
- model_name: gpt-4.1
litellm_params:
model: openai/gpt-4.1
api_key: os.environ/OPENAI_API_KEY
litellm_settings:
callbacks: ["otel"]
general_settings:
master_key: sk-1234
otel: true