Skip to main content

Elasticsearch Logging with LiteLLM

Send your LLM requests, responses, costs, and performance data to Elasticsearch for analytics and monitoring using OpenTelemetry.

Quick Start​

1. Start Elasticsearch​

# Using Docker (simplest)
docker run -d \
--name elasticsearch \
-p 9200:9200 \
-e "discovery.type=single-node" \
-e "xpack.security.enabled=false" \
docker.elastic.co/elasticsearch/elasticsearch:8.18.2

2. Set up OpenTelemetry Collector​

Create an OTEL collector configuration file otel_config.yaml:

receivers:
otlp:
protocols:
grpc:
endpoint: 0.0.0.0:4317
http:
endpoint: 0.0.0.0:4318

processors:
batch:
timeout: 1s
send_batch_size: 1024

exporters:
debug:
verbosity: detailed
otlphttp/elastic:
endpoint: "http://localhost:9200"
headers:
"Content-Type": "application/json"

service:
pipelines:
metrics:
receivers: [otlp]
exporters: [debug, otlphttp/elastic]
traces:
receivers: [otlp]
exporters: [debug, otlphttp/elastic]
logs:
receivers: [otlp]
exporters: [debug, otlphttp/elastic]

Start the OpenTelemetry collector:

docker run -p 4317:4317 -p 4318:4318 \
-v $(pwd)/otel_config.yaml:/etc/otel-collector-config.yaml \
otel/opentelemetry-collector:latest \
--config=/etc/otel-collector-config.yaml

3. Install OpenTelemetry Dependencies​

pip install opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp

4. Configure LiteLLM​

Create a config.yaml file:

model_list:
- model_name: gpt-4.1
litellm_params:
model: openai/gpt-4.1
api_key: os.environ/OPENAI_API_KEY

litellm_settings:
callbacks: ["otel"]

general_settings:
otel: true

Set environment variables and start the proxy:

export OTEL_EXPORTER_OTLP_ENDPOINT="http://localhost:4317"
litellm --config config.yaml

5. Test the Integration​

Make a test request to verify logging is working:

curl -X POST "http://localhost:4000/v1/chat/completions" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-4.1",
"messages": [{"role": "user", "content": "Hello from LiteLLM!"}]
}'

6. Verify It's Working​

# Check if traces are being created in Elasticsearch
curl "localhost:9200/_search?pretty&size=1"

You should see OpenTelemetry trace data with structured fields for your LLM requests.

7. Visualize in Kibana​

Start Kibana to visualize your LLM telemetry data:

docker run -d --name kibana --link elasticsearch:elasticsearch -p 5601:5601 docker.elastic.co/kibana/kibana:8.18.2

Open Kibana at http://localhost:5601 and create an index pattern for your LiteLLM traces:

Production Setup​

With Elasticsearch Cloud:

Update your otel_config.yaml:

exporters:
otlphttp/elastic:
endpoint: "https://your-deployment.es.region.cloud.es.io"
headers:
"Authorization": "Bearer your-api-key"
"Content-Type": "application/json"

Docker Compose (Full Stack):

# docker-compose.yml
version: '3.8'
services:
elasticsearch:
image: docker.elastic.co/elasticsearch/elasticsearch:8.18.2
environment:
- discovery.type=single-node
- xpack.security.enabled=false
ports:
- "9200:9200"

otel-collector:
image: otel/opentelemetry-collector:latest
command: ["--config=/etc/otel-collector-config.yaml"]
volumes:
- ./otel_config.yaml:/etc/otel-collector-config.yaml
ports:
- "4317:4317"
- "4318:4318"
depends_on:
- elasticsearch

litellm:
image: ghcr.io/berriai/litellm:main-latest
ports:
- "4000:4000"
environment:
- OPENAI_API_KEY=${OPENAI_API_KEY}
- OTEL_EXPORTER_OTLP_ENDPOINT=http://otel-collector:4317
command: ["--config", "/app/config.yaml"]
volumes:
- ./config.yaml:/app/config.yaml
depends_on:
- otel-collector

config.yaml:

model_list:
- model_name: gpt-4.1
litellm_params:
model: openai/gpt-4.1
api_key: os.environ/OPENAI_API_KEY

litellm_settings:
callbacks: ["otel"]

general_settings:
master_key: sk-1234
otel: true